Quadratic Applications

Name: \qquad Date: \qquad

1. You drop a ball off a cliff at 320 ft . How long does it take the ball to hit the ground? $0=-16 t^{2}+320$
2. You launched a model rocket with an initial speed of 64 feet per second and a start height of 512. After how many seconds will the rocket hit the ground? $0=-16 t^{2}+64 t+512$

A ball is thrown into the air from a height of 256 feet at time $t=0$. The function that models this situation is $h(t)=-16 t^{2}+96 t+256$, where t is measured in seconds and h is the height in feet.
3. What is the height of the ball at 2 seconds? $h(2)=$
4. When is the ball at it's maximum height?
5. What is the maximum height?
6. When will the ball hit the ground? $0=-16 t^{2}+96 t+256$

Quadratic Applications

7. If an object is thrown vertically upward, its height h, above the ground in feet after t seconds is given by $h=h_{0}+v_{0} t-16 t^{2}$, where h_{0} is the initial height from which the object is thrown and v_{0} is the initial velocity of the object. Using this formula solve the problem.

A ball thrown vertically into the air has the equation of motion $h=48+32 t-16 t^{2}$.
A) How high is the ball at $t=0$?
B) How high is the ball at $t=1$?
C) What is the vertex of the parabola that represents this object?
D) What direction is the object moving at 2 seconds?
E) What is the objects maximum height?
F) When is the object at it's maximum height?
G) When does the ball hit the ground again?
8. A bicyclist is riding at a speed of $18 \mathrm{mi} / \mathrm{hr}$ when she starts down a long hill. The distance d she travels in feet can be modeled by $d(t)=4 t^{2}+18 t$, where t is the time in seconds. How long will it take her to reach the bottom of a $\mathbf{4 0 0} \mathrm{ft}$ hill? $400=4 t^{2}+18 t$

