```
Name:_____
```

_ Date: _____

1. You drop a ball off a cliff at 320 ft. How long does it take the ball to hit the ground? $0 = -16t^2 + 320$

2. You launched a model rocket with an initial speed of 64 feet per second and a start height of 512. After how many seconds will the rocket hit the ground? $0 = -16t^2 + 64t + 512$

A ball is thrown into the air from a height of 256 feet at time t = 0. The function that models this situation is $h(t) = -16t^2 + 96t + 256$, where t is measured in seconds and h is the height in feet.

- 3. What is the height of the ball at 2 seconds? h(2) =
- 4. When is the ball at it's maximum height?
- 5. What is the maximum height?
- 6. When will the ball hit the ground? $0 = -16t^2 + 96t + 256$

7. If an object is thrown vertically upward, its height h, above the ground in feet after t seconds is given by $h = h_0 + v_0 t - 16t^2$, where h_0 is the initial height from which the object is thrown and v_0 is the initial velocity of the object. Using this formula solve the problem.

A ball thrown vertically into the air has the equation of motion $h = 48 + 32t - 16t^2$.

- A) How high is the ball at t=0?
- B) How high is the ball at t=1?
- C) What is the vertex of the parabola that represents this object?
- D) What direction is the object moving at 2 seconds?
- E) What is the objects maximum height?
- F) When is the object at it's maximum height?
- G) When does the ball hit the ground again?
- 8. A bicyclist is riding at a speed of 18 mi/hr when she starts down a long hill. The distance d she travels in feet can be modeled by $d(t) = 4t^2 + 18t$, where t is the time in seconds. How long will it take her to reach the bottom of a **400** ft hill? $400 = 4t^2 + 18t$