Exponential Growth and Decay Practice

Name: \qquad Date: \qquad
Growth: $y=P(1+r)^{t}$
Decay: $y=P(1-r)^{t}$
Find the following information for the equations below: growth or decay, starting value, growth or decay factor, growth or decay rate.

1. $y=300(1.45)^{x}$

Growth or Decay
Start value: \qquad
Factor: \qquad
Rate \qquad
2. $y=50(1.80)^{x}$

Growth or Decay
Start value: \qquad
Factor: \qquad
Rate \qquad
3. $y=5000(.75)^{x}$

Growth or Decay
Start value: \qquad
Factor: \qquad
Rate \qquad
4. $y=625(.30)^{x}$

Growth or Decay
Start value: \qquad
Factor: \qquad
Rate \qquad
5. $y=350(1.95)^{x}$

Growth or Decay
Start value: \qquad
Factor: \qquad
Rate \qquad
6. $y=28000(.40)^{x}$

Growth or Decay
Start value: \qquad
Factor: \qquad
Rate \qquad

Use the exponential growth and decay formulas from above to answer the following questions.

7. You deposit $\$ 1500$ in an account that pays 5% interest. Find the balance after 6 years.
8. The mice population is 25,000 and is decreasing by 20% each year. Write a model for this situation. What will be the mice population after 3 years?
9. The number of mosquitoes at the beach has grown by 75% every year since 1999. In 1999, there were 2,500 mosquitoes. Write a model for this situation. How many mosquitoes would you predict were at the beach in 2005?
10. Given the exponential model $y=200(.80)^{x}$, tell whether the model represents exponential growth or decay. Then, tell what the growth/decay factor is and the growth/decay percent.
11.I bought a car for $\$ 25,000$, but its value is depreciating at a rate of 10% per year. How much will my car be worth after 8 years?
