Directions: Identify each number as rational or irrational.

1. 4.101010001	 2. –0.33333	
3 . 4 <i>π</i>	 4. $\frac{3}{4}$	
5. √ <u>256</u>	 6. √ <u>216</u>	
7 . √440	 8. $(3\sqrt{5})^2$	

Directions: Are the following sums, differences, and products rational or irrational?

9. $\sqrt{13} * \sqrt{13}$	10. $\sqrt{49} + \sqrt{25}$
11. $3\pi - \pi$	12. $\sqrt{50} * \sqrt{40}$
13. $\sqrt{\frac{14}{5}} * \sqrt{\frac{10}{7}}$	13. $5(3\pi - 6) - 15\pi$

Directions: Circle the best answer for each multiple choice question below.

14. Which number can you add to any rational number to obtain an irrational number? A) 3.453 B) $\sqrt{16}$ C) $79\frac{12}{17}$ D) $\sqrt{8}$

15. Label the following statements as true or false.

- A) The product of two rational numbers is always rational.
- B) The sum of two irrational numbers is always irrational.
- C) The product of two rational numbers is always irrational.
- D) The product of two irrational numbers is never irrational.
- E) The sum of two rational numbers is always irrational.
- F) The sum of a rational and irrational number is rational.
- G) The product of a nonzero rational number and an irrational number is always rational.

16) A rectangle with an area of $10\sqrt{33}$ m², has a side length of $5\sqrt{22}$ m. What is the other side of this rectangle?

17) What is the perimeter from #16?

18) If a square has a perimeter of $20\sqrt{3}$ units, what is the area of the square?

19) If a square has an area of 72 units², what is the perimeter of the square?

20) Solve for x. $3\sqrt{7} \cdot x + \sqrt{5} = 2\sqrt{5}$