Name:_____

Date:_____

What you need to know & be able to do	Things to remember	Problem	Problem
Properties of Equality & Properties of Operations	Study your property sheet and algebraic proof sheets!	1. Which property is illustrated by the following: $\frac{6}{5} \cdot \frac{5}{6} = 1$	2. What is an example of the distributive property?
Linear Models	y = mx + b • m – increase or decrease • b – starting point	3. Lucy gets paid \$150 a week and \$10 for every computer she sells. Write an expression that represents her weekly income.	4. Andy wants to mail a package. It costs \$4.99 plus \$0.30 for every ounce the package weighs. Write an equation that represents the total cost of shipping the package.
Consecutive Integers	Start with x. x + (x+1) + (x+2)+=	5. 3 consecutive integers add up to 153. Find the three integers.	6. Three ODD integers add up to 381. Find the integers.
Rectangle – Find length and width	 Draw a picture Define your and and and and and and and and and and	7. The width of a rectangle is 11 feet longer than the length. The perimeter of the rectangle is 70 feet. Find the length and the width.	8. The length of a rectangle is nine inches more than the width. The perimeter is 34 inches. Find the length.
Solve for 2-variable Equations	ax + by = c • Never move the variable you're solving for.	9. Tony is going to buy fruit for a smoothie. He wants raspberries, r, that are \$4 a carton and strawberries, s, that are \$2 a carton. Write an equation to represent all the combinations of fruit if Tony has \$18 to spend.	 10. Using your equation from #15, solve for s, in terms of r, the number of raspberries. 11. If he buys 2 cartons of raspberries, how many strawberries can he buy?

Ger / "geora i			
Solve for an indicated variable	PEMDAS • Backwards, from the ground up!	12. Solve for x: y = -4x + 16	13. Solve for L: P = 2(L + W)
Find the solution of a system of linear equations by graphing .	 Get "y" by itself. Identify the slope (m) and the y-int (b) y = mx + b Check your answer! 	y = -x - 2 14. $y = -x - 2$ $x + y = 3$	$y = x + 2$ 15. $y = \frac{1}{4}x - 1$
Find the solution of a system of linear equations by <u>substitution</u> .	 Solve one of the equations for a variable (either x or y). Substitute into the other equation. Plug back into the ORIGINAL! Check your answer! 	$ \begin{array}{r} -7x + 8y = 6 \\ x = -4y - 6 \end{array} $	17. 8x+2y=16 x-y=7
Find the solution of a system of linear equations by <u>elimination</u> .	 Decide which variable you want to get rid of. Make sure the coefficients are opposite Add the two equations. Solve for the variable. Substitute back into the original. Check your answer! 	$ \begin{array}{r} -2x - 8y = 6 \\ 2x + 6y = -6 \end{array} $	19. $12x - 8y = 12$ $6x - 7y = -12$

Find the solution of a system of linear equations by <u>the</u> <u>best method</u> .	 Check if a pair is already opposite for elimination. Check to see if either equation is already solved for a variable for substitution. Check to see if the equations are already in slope-intercept form. 	20. $-3x + y = 17$ 8x + 7y = 3	3x - 3y = -3 -5x + 9y = 29
Solving a System of Linear Equations Word Problem	 Define x and y. Set up two equations. Decide the best method. Solve. End with words! 	22. Amy's school is selling tickets to a choral performance. A senior citizen's ticket is \$6 and a child's ticket is \$15. If they made \$810 dollars and sold a total of 72 child and senior citizen tickets, how many of each ticket did they sell?	23. The band is selling wrapping paper for a fundraiser. Customers can buy rolls of plain wrapping paper and rolls of shiny wrapping paper. The band sold a total of 55 rolls and made \$950. If a roll of plain costs \$14 and a roll of shiny costs \$20, how many rolls of each did they sell?
Graphing a system of linear inequalities.	 Make sure both equations are in slope-intercept form. Decide if the lines will be solid or dashed. Graph the lines. Test a point- typically (0,0). Shade appropriately. 	$y > -2x - 3$ 24. $y \le \frac{1}{2}x + 2$	25. $y \le x+1$ y < -x-3

GSE Algebra I		Unit 2 Final Exam Study Guide	
		3. Function or Not a	4. Function or Not a Function
Identify: <u>Function</u> or <u>Not a Funtion</u> EXPLAIN!!!!	Graphs: Must pass the Vertical Line Test! Points: Inputs cannot repeat!	Function	{(3,3),(4,3),(4,4),(6,5)}
Given functions, <u>simplify</u> the expressions.	 Choose the correct functions. Pay attention to where the number is if there is one. Combine Like Terms. 	$f(x) = x^{2} + 3x - 5$ $g(x) = 2x^{2} - x + 2$ $h(x) = 3x^{3}$ 6. $g(x) - f(x)$ 8. $f(1) + g(-2)$	5. $f(x)+g(x)$ 7. $3h(x)-2f(x)$ 9. $3f(x)+2g(x)$
<u>Evaluating</u> Functions	 SHOW WORK! Plug it in. Use parenthesis when substituting 	10. Given, $g(x) = x^{2} + x - 4$ a. Find $g(-2) = $ b. Find $g(5) = $	11. $g(0) = $ $g(__) = 1$

COL / (gobia)	1	011	II Z TITAI EXamology Coldo
Find the <u>average</u> <u>rate of change</u>	 Rate of Change Average Rate of Change Slope 	12. (2,–3) and (–2,8)	13. When $x_1 = 1$ and $x_2 = 3$ x g(x) -1 4 0 2 1 0 2 -2 3 -4
<u>Arithmetic</u> <u>Sequences</u>	 <u>Adding</u> or <u>Subtracting</u> to get to the next term a_n = dn + a₀ 	14. Write the explicit rule for the following sequence and find the 50 th term: 3, 6, 9, 12, 15, 18	15. Write the first 4 terms in the sequence: $a_1 = 9$ $a_n = a_{n-1} - 2$
<u>Characteristics of</u> <u>a Linear Function</u>	 Domain Range Y-int X-int Inc/Dec Rate of Change End Behavior Slope 		Equation: Domain: Range: X-Int:Y-Int: Increasing or Decreasing End Behavior: $x \rightarrow \infty$, f(x) \rightarrow $x \rightarrow - \infty$, f(x) \rightarrow RoC from $x_1 = -6$ to $x_2 = 3$: