\qquad
Use the following to review for you test. Work the Practice Problems on a separate sheet of paper if needed.

What you need to know \& be able to do	Things to remember	Problem	Problem
Properties of Equality \& Properties of Operations	Study your property sheet and algebraic proof sheets!	1. Which property is illustrated by the following: $\frac{6}{5} \cdot \frac{5}{6}=1$	2. What is an example of the distributive property?
Linear Models	$y=m x+b$ - m-increase or decrease - b-starting point	3. Lucy gets paid $\$ 150$ a week and $\$ 10$ for every computer she sells. Write an expression that represents her weekly income.	4. Andy wants to mail a package. It costs $\$ 4.99$ plus $\$ 0.30$ for every ounce the package weighs. Write an equation that represents the total cost of shipping the package.
Consecutive Integers	$\begin{aligned} & \text { Start with } x . \\ & x+(x+1)+ \\ & (x+2)+\ldots= \end{aligned}$	5. 3 consecutive integers add up to 153 . Find the three integers.	6. Three ODD integers add up to 381. Find the integers.
Rectangle - Find length and width	- Draw a picture - Define your l and \boldsymbol{w} - Add all 4 sides - Solve for both variables	7. The width of a rectangle is 11 feet longer than the length. The perimeter of the rectangle is 70 feet. Find the length and the width.	8. The length of a rectangle is nine inches more than the width. The perimeter is 34 inches. Find the length.
Solve for 2-variable Equations	$a x+b y=c$ - Never move the variable you're solving for.	9. Tony is going to buy fruit for a smoothie. He wants raspberries, r, that are $\$ 4$ a carton and strawberries, s, that are $\$ 2$ a carton. Write an equation to represent all the combinations of fruit if Tony has $\$ 18$ to spend.	10. Using your equation from \#15, solve for s, in terms of r, the number of raspberries.
			11. If he buys 2 cartons of raspberries, how many strawberries can he buy?

Solve for an indicated variable	PEMDAS - Backwards, from the ground up!	12. Solve for $\mathrm{x}: \mathrm{y}=-4 \mathrm{x}+16$	13. Solve for L: P = 2(L + W)
Find the solution of a system of linear equations by graphing.	- Get " y " by itself. - Identify the slope (m) and the y-int (b) - $y=m x+b$ - Check your answer!	14. $\begin{aligned} & y=-x-2 \\ & x+y=3 \end{aligned}$	$y=x+2$ $y=\frac{1}{4} x-1$
Find the solution of a system of linear equations by substitution.	- Solve one of the equations for a variable (either x or y). - Substitute into the other equation. - Plug back into the ORIGINAL! - Check your answer!	16. $\begin{aligned} & -7 x+8 y=6 \\ & x=-4 y-6 \end{aligned}$	$\text { 17. } \begin{aligned} & 8 x+2 y=16 \\ & x-y=7 \end{aligned}$
Find the solution of a system of linear equations by elimination.	- Decide which variable you want to get rid of. - Make sure the coefficients are opposite - Add the two equations. - Solve for the variable. - Substitute back into the original. - Check your answer!	18. $\begin{aligned} -2 x-8 y & =6 \\ 2 x+6 y & =-6 \end{aligned}$	19. $\begin{array}{r}12 x-8 y=12 \\ 6 x-7 y=-12\end{array}$

Identify: Function or Not a Funtion EXPLAIN!!!!	Graphs: Mus \dagger pass the Vertical Line Test! Points: Inputs cannot repeat!	3. Function or Not a Function	4. Function or Not a Function $\{(3,3),(4,3),(4,4),(6,5)\}$
Given functions, simplify the expressions.	- Choose the correct functions. - Pay attention to where the number is if there is one. - Combine Like Terms.	$\begin{aligned} & f(x)=x^{2}+3 x-5 \\ & g(x)=2 x^{2}-x+2 \\ & h(x)=3 x^{3} \end{aligned}$ 6. $g(x)-f(x)$ 8. $f(1)+g(-2)$	5. $f(x)+g(x)$ 7. $3 h(x)-2 f(x)$ 9. $3 f(x)+2 g(x)$
Evaluating Functions	- SHOW WORK! - Plug it in. - Use parenthesis when substituting	10. Given, $g(x)=x^{2}+x-4$ a. Find $g(-2)=$ \qquad b. Find $g(5)=$ \qquad	$\begin{aligned} & 11 . g(0)= \\ & g(\square)=1 \end{aligned}$

