\qquad Date: \qquad

You need to know \& be able to do	Things to remember	Example Problems	
Factor by GCF	ALWAYS LOOK FOR A GCF FIRST IN WHATEVER TYPE OF fACTORING YOU ARE DOING	1. $6 x+24$	2. $16 a^{2} b^{2}+20 a^{2}$
	Factor out what all terms have in common Divide the coefficients by the GCF and take away the variables	3. $9 x^{4}-15 x^{3}+3 x^{2}$	4. $20 x+30 y$
Factor by Grouping	USE WITH 4 TERMS Group the $1^{\text {st }} 2$ terms and the last 2 terms Factor out the GCF of each group	5. $18 a^{3}-21 a^{2}+30 a-35$	6. $35 u v+14 u-40 v-16$
	If the "leftovers" match write your factors If the "leftovers" don' \dagger match it is prime	7. $5 x^{2}+2 x+5 x+2$	8. $4 x^{2}+10 x-6 x-15$
Factor when$a=1$	USE WITH 3 TERMS Play X Game [a•c goes at the top and b at the bottom, find numbers that multiply to give you the top and add to give you the bottom Write your factors	9. $x^{2}+7 x+6$	10. $x^{2}+11 x+24$
		11. $x^{2}-7 x+10$	12. $2 x^{2}+2 x-12$
Factor when $a>1$	USE WITH 3 TERMS Play X Game Grouping- keep $1^{\text {st }}$ term the same and last term the same and break up middle term using the numbers from X	13. $5 x^{2}+6 x+1$	14. $3 x^{2}-10 x+7$

	Game, then factor by grouping Slip and Divide- write your factors using the numbers from X Game then divide both factors by a. Simplify if you can, if not, then move the a to the front of the factor (in front of the x, not the parenthesis)	15. $5 \mathrm{x}^{2}+12 \mathrm{x}+4$	16. $18 x^{2}+24 x-10$
Difference of Squares	USE WITH 2 TERMS Must be a Binomial, Must be Subtraction, Both terms must be Perfect Squares	17. $\mathrm{x}^{2}-25$	18. $\mathrm{x}^{2}-49$
	$a^{2}-b^{2}=(a+b)(a-b) ;$ where a is the square root of the $1^{\text {st }}$ term and b is the square root of the $2^{\text {nd }}$ term Watch out for double difference of squares	19. $2 x^{2}-32$	20. $x^{4}-81$
Discriminant	Find the number and type of solutions. $b^{2}-4 a c$ Positive: 2 real solutions Negative: No real solutions Zero: 1 Real solutions	21.	22. $x^{2}+8 x+4=0$
Solve a Quadratic by Factoring	Get in standard form. Factor.	23. $4 x^{2}-9=0$	$242 x^{2}+x=6$
	Set each factor equal to zero and solve.	25. $4 x^{2}-4 x-15=0$	26. $5 x^{2}+x=4$

Solve a Quadratic by	Isolate the square. Take the square root of both sides.	27. $x^{2} \quad 13=0$	28. $x^{2}-81=0$
Taking Square Roots	Don't forget the \pm. Get the variable by itself.	29. $(x-1)^{2}+4=20$	30. $(x+4)^{2}=121$
Solve a Quadratic by Completing the Square	Put terms with an x on the left. Make sure $\mathrm{a}=1$. Find the number that completes the square.	31. $x^{2}+2 x-4=0$	32. $x^{2}+8 x+4=0$
	Add it to both sides. Factor the left. Simplify the right. Take the square root of each side. Solve for x .	33. $x^{2} 8 x-36=0$	34. $x^{2}+4 x-2=0$
Solve a Quadratic by Quadratic Formula		35. $x^{2}+4 x-2=0$	36. $x^{2}+4 x-1=0$
	Put it in standard form. Identify a, b, and c .		
	Use the formula. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	37. $x^{2} 3 x=2$	38. $2 x^{2}+2 x=12 x \quad 1$

