Unit 3B Race Car Review

A rocket is launched with an initial speed of 64 ft per second and a starting height of 512 feet. Using the equation $h(t)=-16 \dagger^{2}+64 \dagger+512$, answer questions $1-5$.

1. What is the rocket's height at 1 second?
2. Find the vertex of the rocket.
3. What is the maximum height of the rocket?
4. When does the rocket reach the maximum height and change direction?
5. When does the rocket hit the ground?
6. Using the following table find the rate of change for the Quadratic function over the interval $3 \leq x \leq 5$.

x	y
1	9
2	7
3	9
4	15
5	25

7. A) Graph the quadratic inequality.

$$
y<2 x^{2}+12 x+15
$$

B) Name a possible solution to the inequality in 7A.
8. Using the following graph find the given characteristics.

Vertex: \qquad
Domain: \qquad
$x-\operatorname{int}(s):$ \qquad
AOS: \qquad
Range: \qquad

Extrema: \qquad
Interval of Increase: \qquad
Interval of Decrease: \qquad
End Behavior:

$$
\begin{aligned}
& x \rightarrow \infty, f(x) \rightarrow \\
& x \rightarrow-\infty, f(x) \rightarrow
\end{aligned}
$$

9. What is the equation of the graph in \#8 in vertex form? (Try to write the equation from the graph).
10. What is the y-intercept of the quadratic function: $f(x)=-(x-4)^{2}+2$?
11. Which function has a vertex in the 3rd quadrant? $F(x)=(x+3)^{2}+1 \quad O R \quad G(x)=x^{2}+6 x-5$
12. Jessica converted $f(x)=2 x^{2}+4 x+5$ into vertex form and decided the answer should be $f(x)=2(x-1)^{2}+3$. Is Jessica's Vertex form of the equation correct? If she did make a mistake how could she correct it?
13. Use the following description to write a quadratic function in vertex form. The parent function $f(x)=x^{2}$ is translated left 2 units, vertically shrunk by a scale factor of $1 / 2$ and translated down 5 units.
